Modeling ionospheric outflows and their impact on the magnetosphere, initial results

نویسندگان

  • A. Glocer
  • G. Tóth
  • T. Gombosi
  • D. Welling
چکیده

[1] Ionospheric outflow has been shown to be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. We present the results of new efforts to model the source and effects of out-flowing plasma in the Space Weather Modeling Framework (SWMF). In particular, we develop and use the Polar Wind Outflow Model (PWOM), a field-aligned, multifluid, multifield line polar wind code to simulate the ionospheric outflow. The PWOM is coupled to the ionosphere electrodynamics and global magnetosphere components of the SWMF, so we can calculate the outflow and its resulting impact on magnetospheric composition and dynamics. By including the outflow as part of a coupled system, we study the consequences of outflow on the larger space environment system. We present our methodology for the magnetosphere-ionosphere coupling, as well as the effect of outflow on the magnetosphere during two geomagnetic storms. Moreover, we explore the use of multispecies MHD to track the resulting plasma composition in the magnetosphere. We find that, by including ionospheric outflow during geomagnetic storms, we can reduce the RMS error in the simulated magnetic field as compared with various GOES satellites by as much as 50%. Additionally, we find that the outflow causes a strong decrease in Dst and in the cross-polar cap potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetosphere sawtooth oscillations induced by ionospheric outflow.

The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic fi...

متن کامل

Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: The effect of outflow intensity

[1] The ionospheric O+ outflow varies dramatically during geomagnetic activities, but the influence of its initial characteristics on the magnetospheric dynamics has not been well established. To expand a previous study on the impact of ionospheric heavy ions outflow originating from different source regions on the magnetotail dynamics and dayside reconnection rate, this study conducts two idea...

متن کامل

Multiscale electrodynamics of the ionosphere-magnetosphere system

[1] In this paper we investigate how the parameters of the ionosphere and the low-altitude magnetosphere mediate the formation and spatiotemporal properties of small-scale, intense electromagnetic structures commonly observed by low-altitude satellites in the auroral and subauroral magnetosphere. The study is based on numerical modeling of a time-evolving, nonlinear system that describes multis...

متن کامل

Tiie Modelled Occurrence of Non-thermal Plasma in the Ionospheric F-region and the Possible Consequences for Ion Outflows into the Magnetosphere

A global, time-dependent, threedimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly ...

متن کامل

Detection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region

Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009